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Graphics

Space geometry with METAPOST
∗

Denis Roegel

Abstract

METAPOST is a tool especially well-suited for the
inclusion of technical drawings in a document. In
this article, we show how METAPOST can be used
to represent objects in space and especially how it
can be used for drawing geometric constructions in-
volving lines, planes, as well as their intersections,
orthogonal planes, etc. All the features belong to
a new METAPOST package aimed at all those who
teach and study geometry.

This article is dedicated to Donald Knuth whose
PhD dissertation was on projective geometry.

1 Introduction

METAPOST (Hobby, 1992; Goossens, Rahtz, and
Mittelbach, 1997; Hoenig, 1998; Hagen, 2002) is
a graphical description language created by John
Hobby from the METAFONT system (Knuth, 1986).

∗ Translated from “La géométrie dans l’espace avec
METAPOST,” Cahiers GUTenberg 39–40, May 2001, pages
107-138, with permission.
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A two-dimensional drawing is represented as a pro-
gram which is compiled into a PostScript file. A
drawing can be described in a very precise and com-
pact fashion by taking advantage of the declarative
nature of the language. For instance, linear con-
straints between the coordinates of several points,
such as those of a central symmetry, are expressed
very naturally by equations. Furthermore, it is pos-
sible to manipulate equations involving values that
are not completely known. For instance, in order to
express that p3 is the middle of [p1, p2], it suffices to
write: p3-p1=p2-p3, or p3=.5[p1,p2].

When this equation is given, some and possibly
all of the coordinates of the three points may be un-
known. Taking the equation into account represents
the addition of a constraint. Constraints are added
until the values involved are precisely known. In
the previous example, the three points can be com-
pletely determined by positioning p1 and p2. A value
can remain indetermined as long as it is not involved
in a drawing. Finally, METAPOST alerts the user if
there are redundant or inconsistent equations.

2 A first example in plane geometry

In order to get a good understanding of how META

POST can naturally express a geometric problem,
let us study the representation of a triangle prop-
erty, such as the existence of the nine points circle
(first stated by Poncelet and Brianchon in 1821).
Figure 1 shows the result produced by METAPOST.
This example will also serve as an introduction to
METAPOST for the reader discovering the language
here.
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Figure 1: The nine points circle.

In this figure, we have first defined the points,
then we set the three vertices of the triangle as func-
tions of the origin (origin) and an arbitrary unit u

enabling us to easily change the size of the graphics
later on:1

numeric u; u=1cm;

pair A,B,C,D,E,F,G,H,I,J,K,L,N,X;

A=origin; B-A=(7u,0); C-A=(u,5u);

Then, the middles D, E and F of the triangle’s
sides are determined by equations:
D=.5[A,B]; E=.5[B,C]; F=.5[A,C];

G, H and I are the feet of the triangle’s heights.
They can be obtained easily by computing the in-
tersection of a side with a segment starting at the
opposite vertex and directed toward a direction at
right angle with the opposite side. The whatever
definition is especially useful in this case, since it
represents an anonymous unknown (so that several
occurrences of whatever do not represent the same
unknown!). We have thus:
G=whatever[B,C]

=whatever[A,A+((C-B) rotated 90)];

This means that G is somewhere on (BC ) and
also somewhere on (AP), where P is a point on the
height. METAPOST gives a value to both unknowns
in order to fulfill this equation. Similarly,
H=whatever[A,C]

=whatever[B,B+((C-A) rotated 90)];

I=whatever[A,B]

=whatever[C,C+((B-A) rotated 90)];

The orthocenter (intersection of the heights) is
obtained with intersectionpoint. The A--G con-
struction represents the [AG ] segment:
X=(A--G) intersectionpoint (C--I);

The middles J , K and L of [AX ], [BX ] and
[CX ] are obtained as were D, E and F previously:
J=.5[A,X]; K=.5[B,X]; L=.5[C,X];

Finally, in order to find the center N of the nine
points circle (assuming its existence), it is sufficient
to compute the intersection of two perpendicular bi-
sectors, for instance those of [ID ] and [DH ]:
N=whatever[.5[D,I],

(.5[D,I]+((D-I) rotated 90))]

=whatever[.5[D,H],

(.5[D,H]+((D-H) rotated 90))];

The circle’s radius is found with:
r=arclength(I--N);

The triangle as well as the heights and the circle
(centered on N and of diameter 2r) are drawn with:
draw A--B--C--cycle;

draw A--G; draw B--H; draw C--I;

draw fullcircle scaled 2r shifted N;

The points are marked with drawdot after the
line width has been increased. Finally, the annota-
tions are all obtained on the model of:

1 For the points, we could also have used z0, z1, etc.,
which are predefined variables.



300 TUGboat, Volume 22 (2001), No. 4

label.top(btex $C$ etex,C);

The label instruction allows for the inclusion
of TEX labels.

This example reveals the natural expression of
geometric constraints for problems in plane geom-
etry. All the constructions we have used are abso-
lutely standard in METAPOST. Of course, if we had
many such figures, we would introduce functions for
the computation of the heights, the perpendicular
bisectors, etc.

3 METAPOST extensions

METAPOST is an extensible system. At the basis,
it is a program which loads an initial set of macros.
It is then possible to add new domain-specific defi-
nitions. For instance, when we worked on the plane
representation of objects in space, we developed a
3d package, initially in order to manipulate poly-
hedra (Roegel, 1997). We have recently developed
other extensions resting on the 3d package. We view
these extensions as “modules” of the 3d package. In
particular, we wanted to manipulate objects other
than polyhedra, such as curves defined by equations,
or given by a sequence of points. Among the exten-
sions created, we have created a module providing
various functionalities adapted to space geometry.
This module, introduced here, is the 3dgeom mod-
ule2 (see figure 2).

3d

polyhedra curves . . . geometry

Figure 2: Structure of the 3d package and of
modules.

Some of the modules automatically load other
modules. The 3dgeom module loads for instance 3d.
A module is loaded only once.

A program using 3dgeom will therefore start
with input 3dgeom.

4 Space geometry

4.1 A simple example

We will start by representing an elementary object,
the cube (figure 3). For that, we will give the coor-
dinates of its eight vertices.

The 3d package defines a concept of point or
vector as a triple of numerical values. The points

2 This module is available on CTAN under graph-

ics/metapost/macros/3d.

Figure 3: A cube shown in linear perspective.

must be defined by an allocation mechanism and
must be freed when they are no longer used. The
allocation of a point (resp. a vector) is done with
new_point (resp. new_vec). This is a macro taking
a point (resp. vector) name and allocating a memory
area to store it. Freeing a point or a vector is done
with free_point or free_vec, by giving the point
or vector identification as a parameter. Hence, a
program that wishes to use a vector v will look like
this:
new_vec(v);

...

free_vec(v);

The set of all points and vectors is stored in-
ternally in a stack. Allocating or freeing a vector
merely changes the stack pointer. As a consequence,
points and vectors must be freed in the reverse order
of their allocation. If that order is not respected, an
unallocation error is raised.
new_point(pa); new_point(pb);

...

free_point(pb); free_point(pa);

It is not compulsory to free vectors or points,
but not doing so will often have dramatic conse-
quences if the allocations are within loops.

In order to ease the manipulation of sets of
points, arrays can be allocated with new_points and
freed with free_points. An array defined in that
way has a name and a number of elements n. The
elements are numbered from 1 to n. In our example,
in order to create a cube, we declare a vertex array
of eight points:
new_points(vertex)(8);

...

free_points(vertex)(8);

Each vertex is declared with the set_point_
command, for instance:
set_point_(vertex1)(0,0,0);

By default, the perspective is linear (or cen-
tral) and we have a camera witnessing the scene
(figure 4). The camera must also be set. It cor-
responds to the predefined point Obs. Its position
can be defined in space with set_point_. Moving
the camera is done by expressing its coordinates in
a parametric way, for instance:3

3 In the code, cosd and sind represent the trigonometric
functions with arguments in degrees.
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Obs(3.23, 2.35, 2)

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)(1, 1, 0)

Figure 4: A cube and its projection on the screen. The focused point is circled.

Figure 5: Five views of the cube “animation.”

set_point_(Obs)(20*cosd(3.6*i),20*sind(3.6*i),6);

By varying i, the camera goes through points of
the circle C(t) = (20 cos(3.6t), 20 sin(3.6t), 6). Fig-
ure 5 shows five views of that sequence, for i =
0, 5, 10, 15 and 20. An animation can be obtained
by creating a sufficient amount of close views and
by transforming the METAPOST outputs into GIF
files. The procedure is explained in detail in our first
article (Roegel, 1997).

Besides the camera position, it is necessary to
define its orientation. It can be specified by three an-
gles, but also in a simpler way by indicating a point
towards which the camera is oriented and an angle.
In order for the camera to be constantly focused on
vertex 8, with the angle 90 (this angle corresponds
to the degree of freedom of a rotation around the
direction of view), it suffices to write:
Obs_phi:=90;

point_of_view_abs(vertex8,Obs_phi);

The“:=”assignment is used because it makes it
possible to change the value of a variable when this
variable already has a value. Writing Obs_phi=90
can produce an error if Obs_phi is already set, and
in particular if it has a value different from 90.

Finally, in order to define the view completely,
the position of the screen must be given. In linear
perspective, the screen is a plane orthogonal to the
viewing direction. It is on the screen that the points
in space are projected. Figure 4 shows that the fo-
cused point lies in the middle of the screen. The

screen is determined by its distance to the camera.
This distance should also be that from which the
computed scene is looked at (provided the scene is
not scaled). We take for instance:
Obs_dist:=2;

At the time of projection, this value as well as
the other coordinate values are multiplied by the
value of drawing_scale, which defaults to 2 cm.
The above value of Obs_dist therefore corresponds
to a camera located at a distance of 4 cm from the
screen.

Once the cube’s vertices and the camera are in
place, the points must be projected on the screen
with the project_point command. To each point
in space corresponds a point in the plane. With
project_point(3,vertex3), point z3 of the plane
is associated to vertex 3 of the cube. Once the points
have been projected, the edges can be drawn:
draw z1--z2--z4--z3--cycle;

draw z5--z6--z8--z7--cycle;

draw z1--z5; draw z2--z6;

draw z3--z7; draw z4--z8;

The complete program, with a few more initial-
izations as well as the loop creating the animation,
is given in figure 6. (This example didn’t make use
of the geometry module.)

4.2 Improvements to the previous example

The source code producing the cube is rather sim-
ple, but it is easy to come up with drawings that
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input 3danim; drawing_scale:=10cm;

new_points(vertex)(8);

for i:=0 upto 20:

beginfig(100+i);

% Cube
set_point_(vertex1)(0,0,0); set_point_(vertex2)(0,0,1);

set_point_(vertex3)(0,1,0); set_point_(vertex4)(0,1,1);

set_point_(vertex5)(1,0,0); set_point_(vertex6)(1,0,1);

set_point_(vertex7)(1,1,0); set_point_(vertex8)(1,1,1);

% Observer/camera
set_point_(Obs)(20*cosd(3.6*i),20*sind(3.6*i),6);

Obs_phi:=90; Obs_dist:=2; point_of_view_abs(vertex8,Obs_phi);

% Projections
for j:=1 upto 8:

project_point(j,vertex[j]);

endfor;

% Lines
draw z1--z2--z4--z3--cycle; draw z5--z6--z8--z7--cycle;

draw z1--z5; draw z2--z6; draw z3--z7; draw z4--z8;

endfig;

endfor;

free_points(vertex)(8);

end.

Figure 6: Program producing the cube animation.

are more complex and very difficult to handle, be it
only because of the large amount of points involved.
Moreover, the points do not necessarily belong to
the same objects (we can have a cube, a tetrahe-
dron, or other objects all present at the same time)
and they may be subject to different treatments.
It is in this spirit that we have introduced in the
3d package notions of classes and objects making it
possible to group a number of points, in order to
manipulate them globally, or in order to instantiate
certain classes several times (see (Meyer, 1997) for
more details on object-oriented programming). We
will therefore redefine the cube, as a class, and then
instantiate it.

The new code (figure 7) shows the definition of
a “C” class. All the objects of that class are cubes.
The class definition is split in three parts, which have
to be called def_C, set_C_points and draw_C:

• The general definition function is def_C: This
function takes as a parameter an object name
and instantiates it. Specifically, this function
defines the number n of points making up the
object (they will be numbered 1 to n) and calls
the function defining the points. Depending on
the nature of the defined objects, it may per-
form other initializations; in particular, though
it is not the case here, the initialization can de-

pend on the object name, that is, on the pa-
rameter.

• set_C_points, the function defining the
points, takes the calls to set_point_ but
replaces them with set_point. Calling
set_point(1)(0,0,0) means that point 1 of
that object is defined. Thus, we have now a
local point notion.

• Finally, a drawing function draw_C indicating
how the object must be drawn.

The instantiation itself, that is the operation
associating an object to a class, is done with a call
to assign_obj("cube","C"). The latter operation
defines the cube object as an instance of the C class.
It leads in particular to the call of the def_C func-
tion, hence to the computation of the cube’s points.
It should be noted that in this example the points
of the cube are set before the camera is set. In more
complex drawings (like in figure 21), it is sometimes
necessary to have points of an object depending on
the position of the camera. In that case, besides the
call to the assign_obj function (which must only
occur once per object), the object positions can be
recomputed with reset_obj (set_C_points cannot
be used directly since this function doesn’t state how
the absolute point numbers should be computed).
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input 3danim; drawing_scale:=10cm;

vardef def_C(expr inst)=

new_obj_points(inst,8); set_C_points(inst);

enddef;

vardef set_C_points(expr inst)=

set_point(1)(0,0,0); set_point(2)(0,0,1); set_point(3)(0,1,0); set_point(4)(0,1,1);

set_point(5)(1,0,0); set_point(6)(1,0,1); set_point(7)(1,1,0); set_point(8)(1,1,1);

enddef;

vardef draw_C(expr inst)=

draw_lines(1,2,4,3,1); draw_lines(5,6,8,7,5); draw_line(1,5);

draw_line(2,6); draw_line(3,7); draw_line(4,8);

enddef;

assign_obj("cube","C");

for i:=0 upto 20:

beginfig(100+i);

% Camera
set_point_(Obs)(20*cosd(3.6*i),20*sind(3.6*i),6);

Obs_phi:=90; Obs_dist:=2; point_of_view_obj("cube",8,Obs_phi);

draw_obj("cube");

endfig;

endfor;

end.

Figure 7: “3d object” code of the cube.

The main loop is now almost empty. The defi-
nitions concerning the camera have not been modi-
fied, except that concerning the focused point. The
point_of_view_obj function is now used to aim an
object point, here the cube point 8, and not an ab-
solute point.

Finally, the cube is drawn with draw_obj. This
command does both the projection and calls the
draw_C command (with the "cube" parameter) and
it is therefore not sufficient to call draw_C("cube").
The projection imposes a correlation between an ob-
ject’s local points and those of the plane. It is no
longer possible to automatically associate point 7 of
an object to z2, for instance.

In the sequel, we will always encapsulate our
constructions in classes, even if (like here) we in-
stantiate the class only once. The table below sum-
marizes the main functions acting on objects.

Figure 8: The cube with a camera five times
closer as in figure 3.

Definition of C class def_C et set_C_points

Drawing definition of C class draw_C

Object instantiation assign_obj

Operations translate_obj

rotate_obj

scale_obj

reset_obj

Object drawing draw_obj

4.3 Perspective

By default, all representations are done in linear (or
central) perspective, that is the perspective corre-
sponding to what a camera sees when its field of view
is projected on a plane orthogonal to the viewing di-
rection (Le Goff, 2000). The legitimate construction
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rules of a linear perspective drawing have been cod-
ified by the Quattrocento painters and architects.
This perspective is not very apparent on figure 3, be-
cause the camera is far from the cube (we are more
than 2 meters away from a cube with a 10 cm side).
If the camera gets close (and if drawing_scale is de-
creased to prevent the drawing from becoming too
large) we obtain (with no changes to the cube) fig-
ure 8. The linear perspective shows clearly the van-
ishing lines.

In this example, the hidden edges have been
dashed. The cube being defined as in the figure 7,
it is not possible to determine automatically what
is visible and what is not, since nothing has been
said about the faces. But if the cube is defined as
a polyhedron with the 3dpoly extension (Roegel,
1997), the removal of hidden faces can be done au-
tomatically. However, this removal is for the mo-
ment only implemented for isolated convex objects.
In the present article, all dashed lines are inserted
manually.

Other perspectives are provided when the value
of projection_type is changed. 0 corresponds to
the linear perspective. 1 corresponds to a parallel
perspective, where all projections are done parallel
to the viewing direction and orthogonally to the pro-
jection plane. This perspective is different from the
cavalier drawing. It corresponds to a camera set at
an infinite distance, but looking at the scene with
a telescope of infinite power. Since this perspec-
tive doesn’t change the sizes, it is usually necessary
to reduce the size of the projection by decreasing
drawing_scale.

A first category of parallel projections are the
isometric (also called military) perspective, dimetric
and trimetric projections, all usually grouped un-
der the axonometric perspectives. However, accord-
ing to Krikke (Krikke, 2000), these projections are
misnamed. Whereas the isometric perspective was
invented by William Farish in 1822 to fulfill needs
created by the industrial revolution, the real axono-
metric perspective is a perspective that originated
in China and Japan, in particular because it is well
suited to a presentation in rolls. In all parallel per-
spectives, the appearance of an object depends only
on its orientation, not on its distance. A distant
object doesn’t appear smaller than a close object.

A value of 2 for projection_type corresponds
to the oblique perspectives (which are parallel per-
spectives), but where the projection plane is not nec-
essarily orthogonal to the projection direction. In
general, the projection plane is chosen parallel to
one of the object’s faces. The most common oblique
perspectives are the cavalier drawing and the cabinet

drawing. The asian axonometry, where an horizon-
tal axis is orthogonal to the viewing direction, also
seems to be an oblique perspective.

The 3d package makes it possible to obtain any
of these perspectives. In the case of parallel per-
spectives, the camera position is only used to find
the viewing direction, not how close the view is. In
the case of oblique projections, the projection plane
being distinct from the camera, it is necessary to
give it explicitly.

Figure 9 summarizes the various parallel per-
spectives.

A

B

C
D

H

F

G

Figure 10: Orthogonal projections.

Another type of representation uses orthogonal
(or orthographic) projections that are complemen-
tary. An object is described by several orthogonal
projections on planes which are themselves orthog-
onal (see figure 10). The use of several orthogonal
views and their crosschecking is known since antiq-
uity, but have been expounded geometrically for the
first time by Piero della Francesca in the Renais-
sance (cf. (Le Goff, 2000, p. 70)). The crosschecking
of orthogonal views can be used to build a linear per-
spective view. For instance, in figure 10, if the two
projections on planes F and G are represented in
the same plane, the central projection on the plane
H can be determined by crosscheckings. Albrecht
Dürer used this technique to build the intersection
of a cone and a plane in a famous engraving (Dürer,
1525).

Later on, Gaspard Monge systematically stud-
ied the method of double projection and codified it
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Trimetric Dimetric Isometric

Oblique Cavalier Cabinet

Figure 9: Parallel or perspective projections. The projections in the first row are projections where
the projection plane is orthogonal to the projection direction. These projections are also named
axonometric by certain authors (Gourret, 1994). The projections in the second row are oblique
projections, where the projection plane is not orthogonal to the projection direction. The trimetric
projection is the usual case of axonometric projection. In the dimetric projection, two of the axes are
at the same scale and in the isometric projection, the three axes are represented at the same scale.
In the oblique projections, one of the faces of the object is in general parallel to the projection plane
and appears therefore without deformation. In the three cases shown, one of the faces of the projected
cube is indeed a square. The angle of the vanishing lines varies. In the cavalier projection, the vanishing
lines are represented at the same scale as the lines in the projection plane, which confers a non-natural
aspect to that projection (even though it is a genuine oblique projection with no deformation). In order
to get a natural feeling, one should observe the drawing from the right. In the cabinet projection, the
vanishing lines are represented at 1/2 scale which gives a more natural representation, even though there
is no vanishing point. Certain oblique projections are also called planometric, for instance when the
face parallel to the projection plane represents a floor plan and when the vertical lines appear vertical in
projection.

in his Géométrie descriptive (1799). His construc-
tion method is sometimes called Monge construction
or Monge projection. The developments of this tech-
nique led to the standard representation in technical
drawings in France, where a front face of an object is
displayed, to its left the view on the right, to its right
the view on the left, below the view seen from the
top, etc. (In the U.S, the order is reversed, and the
left-side view is on the left, the right-side view is on
the right, etc.) The 3d package currently does not
provide an automatic means of representing these
perspectives, but they can be simulated easily.

4.4 Local and absolute point indices

We have seen that each point or vector defined with
new_point or new_vec corresponds to a stack ele-
ment. A point is then given by its index in that

stack. The local index of a point is that point’s num-
ber as it appears in the object definition, if it has
been defined as an object point. When we defined
the point 2 of our cube with set_point, 2 was not
this point’s index in the stack, but an index relative
to the beginning of that object in the stack.

In certain cases, it is necessary to know the ab-
solute index of a point, for instance because certain
functions need it. This absolute index is obtained by
the pnt function. For instance, in order to compute
the middle of two points 1 and 2 and put the value
in point 3, all these points being local points of an
object, one way is to write:

vec_sum_(pnt(3),pnt(1),pnt(2));

vec_mult_(pnt(3),pnt(3),.5);

This is because vec_sum_ (sum of two vectors)
and vec_mult_ (scalar multiplication of a vector)
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vec sum (w,u,v) vec mult (v,u,3)

~u

~v
~w

~u

~v

Figure 11: Two vector operations.

(see figure 11) take as parameters absolute indices.
It is not sufficient to create variants of these func-
tions for the cases where these points (vectors) are
local (these variants do exist and are called here
vec_sum and vec_mult) because there are often in-
termediate cases involving local points from one or
several objects, as well as points given by their ab-
solute index (like for instance Obs). As a conse-
quence, we have provided variants for the most com-
mon functions, but not for all of them. In certain
cases, one has to resort to the pnt function. How-
ever, for the previous example, the mid_point func-
tion can be used:
mid_point(3,1,2);

The non-local (absolute) variant of mid_point
is mid_point_. The more “internal” functions from
the 3d package have this final “_.” Thus, making
the call mid_point(3,1,2) is equivalent to calling
mid_point_(pnt(3),pnt(1),pnt(2)).

If we had wanted to define a non-local point p
(defined outside an object) as being the middle of
two local points, we would have written:
mid_point_(p,pnt(1),pnt(2));

In all cases, we should be careful to use pnt
only inside an object (this makes it possible not to
mention the object explicitly in the above examples)
and more precisely only in the functions def and
draw of that object.

4.5 Space structures

The objects definable with the 3d package are in
general rather complex objects which will end up
being projected and drawn. These objects are not
specially suited for a mathematical treatment. How-
ever, geometrical constructions, be it in the plane
or in space, involve simple concepts such as lines,
planes and other mathematically defined surfaces or
volumes. These concepts, which we call here struc-
tures, are often used as intermediates for finding new
points or new curves. The structures are seldom
drawn. We will never draw a line, but only a seg-

ment of a line. We will never draw a plane, but only
for instance a rectangle in that plane, or merely a
few points in that plane.

In order to facilitate the manipulation of these
structures, we have created them in a different and
simpler fashion than the objects. These structures
bear some similarities to the primitive types of Java.
Each structure could be wrapped in an object or
associated with an object, but we don’t do it here.

The structures are defined in the 3dgeom mod-
ule. They must also be allocated and freed.

4.5.1 Lines

The simplest of the structures we define is the line.
A line is defined with two points. For instance, in
order to define the line l going through local points
4 and 6, we write:
new_line(l)(4,6);

This function (abs. vers. new_line_) memorizes
the two points, so that a later modification of these
points does not modify the line. The line is there-
fore only initially attached to the points. However,
this is seldom a problem for the structures are often
introduced locally in a construction. Moreover, it is
possible to create a version of new_line that does
not duplicate the points.

Sometimes we want to define a line whose points
have not yet been computed. Sometimes also, we
would like to define a line using another pair of
points, in order to start a different construction.
The set_line (or set_line_) command can then
be used:
set_line(l)(4,8);

Finally, when a line is no longer needed, it can
be freed with free_line (which has only one ver-
sion):
free_line(l);

It should be observed that the structures de-
fined in an object must always be freed within that
object and, as with the points, in the reverse order
of their allocation.
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4.5.2 Planes

A plane is defined in a manner analogous to a line,
but using three points:
new_plane(p)(i,j,k);

set_plane(p)(i,j,k);

free_plane(p);

new_plane_ and set_plane_ are the absolute
versions of these functions.

4.5.3 Other structures

Other structures (in the plane or not, such as circles,
spheres, etc.) are defined in 3dgeom, but they have
not yet all been developed. It is very easy to add
new structures and functions manipulating them.

4.6 Elementary constructions

4.6.1 Plane definitions

The use of structures tremendously simplifies geo-
metric constructions in space. For instance, in order
to draw the projections of the tetrahedron vertices
in figure 10, we have defined the three projection
planes with new_plane:
new_plane(f)(9,10,11);

new_plane(g)(13,14,15);

new_plane(h)(5,6,7);

4.6.2 Perpendiculars of a plane

We have then obtained the perpendiculars of these
planes going through the object points, using the
def_vert_pl function:
def_vert_pl(17)(1)(h);

def_vert_pl(18)(2)(h);

def_vert_pl(19)(3)(h);

def_vert_pl(20)(4)(h);

...

This function takes a point and a plane and
determines the foot of the perpendicular to the plane
going through the point given as parameter (here the
second parameter).

4.6.3 Intersections between lines and
planes

One of 3dgeom’s functions computes the intersection
of a line and a plane:
boolean b;

b:=def_inter_p_l_pl(i)(l)(p);

The intersection of the line l and of the plane p,
if it exists, is computed. If there is an intersection
reduced to a point, the function returns true, oth-
erwise false. The returned point is i (local index).

This function will be illustrated with a high
school plane geometry problem: ABCD is a tetra-
hedron such that AB = 3, AC = 6, AD = 4.5. I
is the point of [AB ] such that AI = 1 and J is the
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Figure 12: Tetrahedron: first construction.

point of [AC ] such that AJ = 4. We must deter-
mine the intersection of the line (IJ ) with the plane
(BCD). We start by constructing the tetrahedron
(figure 12).

We should first notice that several tetrahedra
are fulfilling the requirements: B, C and D are in-
dependent. In order to obtain a rather general con-
struction, we must parameterize it. A can for in-
stance be set in (0, 0, 0), B in (3 cos β, 3 sin β, 0), C
in (6 cos γ, 6 sin γ, 0) and D obtained by the means
of two rotations, one around ~k, the other around a
vector orthogonal to ~k. In METAPOST, this is done
with the commands given in figure 13.

On figure 12, the numbers of the points have
been added as indices. This figure is of course not
well suited to this problem, because (BCD) is facing
the observer. We will therefore move the observer,
for instance to C +5−−→DC +5−−→BC +3−−→CA (figure 14).
In order to achieve this shift, we have reached to
tetrahedra points outside of the tetrahedron with
the pnt_obj function (this function makes it also
possible to define points of an object using points
from another object):

new_vec(v_a);

new_vec(v_b);

new_vec(v_c);

vec_diff_(v_a,pnt_obj("tetra",3),

pnt_obj("tetra",4)); %
−−→
DC

vec_mult_(v_a,v_a,5); % 5 · −−→DC
vec_diff_(v_b,pnt_obj("tetra",3),

pnt_obj("tetra",2)); %
−−→
BC

vec_mult_(v_b,v_b,5); % 5 · −−→BC
vec_diff_(v_c,pnt_obj("tetra",1),

pnt_obj("tetra",3)); %
−−→
CA

vec_mult_(v_c,v_c,3); % 3 · −−→CA
% C + 5

−−→
DC :

vec_sum_(Obs,pnt_obj("tetra",3),v_a);

% C + 5 · −−→DC + 5 · −−→BC :

vec_sum_(Obs,Obs,v_b);

% C + 5 · −−→DC + 5 · −−→BC + 3 · −−→CA :

vec_sum_(Obs,Obs,v_c);

free_vec(v_c);

free_vec(v_b);

free_vec(v_a);
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set_point(1)(0,0,0); % A
set_point(2)(3*cosd(b),3*sind(b),0); % B
set_point(3)(6*cosd(c),6*sind(c),0); % C
new_vec(v_a); new_vec(v_b);
vec_def_vec_(v_a,vec_I); % ~va ←~ı
vec_rotate_(v_a,vec_K,d); % rot. of ~va around ~k by an angle d
vec_prod_(v_b,v_a,vec_K); % ~vb ← ~va ∧ ~k
vec_rotate_(v_a,v_b,e); % rot. of ~va around ~vb by an angle e
vec_mult_(v_a,v_a,4.5);
vec_sum_(pnt(4),pnt(1),v_a); % D
free_vec(v_b); free_vec(v_a);
% Determination of I and J :
% I = A +−−→AB /‖−−→AB ‖
vec_diff(5,2,1); %

−−→V5 ← −−→AB
vec_unit(5,5); %

−−→V5 ← −−→AB /‖−−→AB ‖
vec_sum(5,5,1); % I ← A +−−→AB /‖−−→AB ‖
% J = A + 4 · −−→AC /‖−−→AC ‖
vec_diff(6,3,1); %

−−→V6 ← −−→AC
vec_unit(6,6); %

−−→V6 ← −−→AC /‖−−→AC ‖
vec_mult(6,6,4); %

−−→V6 ← 4 · −−→AC /‖−−→AC ‖
vec_sum(6,6,1); % J ← A + 4 · −−→AC /‖−−→AC ‖

Figure 13: Code for figure 12.
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Figure 14: Tetrahedron: second construction.

We now come to the computation of the inter-
section of the (IJ ) line with the (BCD) plane (fig-
ure 15).
new_plane(bcd)(2,3,4);

new_line(ij)(5,6);

boolean b;

b:=def_inter_p_l_pl(7)(ij)(bcd):

if not b: message "no intersection"; fi;

free_line(ij);

free_plane(bcd);

Two other intersections can be computed using
K, the middle of [AD ] (figure 16). The three inter-
sections are then aligned. (We can see that L, M
and N are as a matter of fact on the intersection of
the planes (IJK ) and (BCD).) We have shown the
alignment with a segment slightly extending on each
side, using
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Figure 15: Tetrahedron: third construction.

draw_line_extra(9,10)(-0.1,1.1);

The second pair of parameters indicates how
much the segment extends on each side. (0, 1) cor-
responds to no extension and a smaller (or larger)
value for the first (or second) parameter produces
an extension.

Figure 16 also illustrates the famous theorem by
Girard Desargues (1639), which is the cornerstone of
projective geometry. According to this theorem, two
triangles BCD and IJK being given in the plane, the
lines (BI ), (CJ ), (DK ) have an intersection if and
only if the intersections of (IK ) and (BD), of (IJ )
and (BC ), and of (KJ ) and (DC ) are aligned. In
our case, the lines (BI ), (CJ ), (DK ) have indeed
an intersection, namely A, and the intersections L,
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Figure 16: Tetrahedron: fourth construction.

M and N are aligned. The theorem states that the
converse also holds. Seen in space, the theorem is
very simple, but a purely plane proof is difficult.

Another function of 3dgeom allows for the direct
computation of the intersection between two planes:
b:=def_inter_l_pl_pl(l)(p)(q);

where b is a boolean. If the intersection between the
planes p and q is a line, the function yields true and
the line is stored in l. Otherwise, the function yields
false. Let us see on an example how this function
can be used. Consider the drawing of a tetrahedron
SABC whose edges SA, SB et SC are known, as
well as the angles ÂSC , ÂSB and B̂SC . Figure 17
shows such a tetrahedron with SA = 9, SB = 8,
SC = 4, ÂSC = 60◦, ÂSB = 40◦ and B̂SC = 30◦.
Contrary to the previous example, here we do not
have a wide margin to place the points. We can of
course start to construct the SAC triangle. It then
only remains to place the B vertex.

S

A

B

C

Figure 17: A tetrahedron specified by three
lengths and three angles.

The angles ÂSB and B̂SC being given, B is
obviously located on two cones: the cone of axis
(SA), of apex S and of angle ÂSB and the cone of
axis (SC ), of apex S and of angle ĈSB . These two

cones in general intersect in two lines and B is on
one of these intersections at the distance SB of S.

With a well-chosen implementation of a cone
structure, the intersection can of course be automat-
ically obtained. But it is also possible to use more
restricted means by observing that we can draw the
heights [SH ] and [SK ] stemming from B for each of
the triangles SAB and SBC . For instance, SH =
SB · cos(ÂSB). We can then define the planes or-
thogonal to the lines (SA) and (SC ) going through
the two heights’ feet. The function
def_orth_pl_l_p(p)(l)(i);

constructs the plane p orthogonal to the line l and
going through the local point i.

The intersection between the two constructed
planes can then be computed. This intersection is a
line orthogonal to the plane of the triangle SAC . On
this line, we look for a point B at a given distance
from S. The function call
b:=def_point_at(i)(d)(j)(l);

where b is a boolean variable, defines the local point
i as being a point of the line l at a distance |d| from
the local point j if such a point can be found. In
that case, the return value of the function is true,
otherwise it is false. In general, two points satisfy
the condition and the function will return either one
depending on the sign of d.

Essentially, the figure is thus produced by the
commands in figure 18.
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Figure 19: A tetrahedron specified by three
lengths and three angles (construction).

The whole construction is given in figure 19.
In order to draw it, we have “unlocalized” points
such as the heights’ feet and the intersection between
the perpendicular in B to the (SAC ) plane. In or-
der to produce the right angles, we have used the
commands def_right_angle for the definition and
draw_double_right_angle for the drawing. Each
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new_point(h); new_point(k);
set_point(1)(0,0,0); % S
set_point(2)(lsa,0,0); % A
set_point(4)(lsc*cosd(aasc),lsc*sind(aasc),0); % C
vec_diff_(h,pnt(2),pnt(1));
vec_unit_(h,h);
vec_mult_(h,h,lsb*cosd(aasb));
vec_sum_(h,h,pnt(1)); % H
vec_diff_(k,pnt(4),pnt(1));
vec_unit_(k,k);
vec_mult_(k,k,lsb*cosd(absc));
vec_sum_(k,k,pnt(1)); % K
new_plane(hp)(1,1,1); % initialization to three points
new_plane(kp)(1,1,1); % ditto
new_line(sa)(1,2); % (SA)
new_line(sc)(1,4); % (SC )
new_line(inter)(1,1); % intersection line of the two planes
def_orth_pl_l_p_(hp)(sa)(h); % plane orthogonal to (SA) in H
def_orth_pl_l_p_(kp)(sc)(k); % plane orthogonal to (SC ) in K
if def_inter_l_pl_pl(inter)(hp)(kp): % there is an intersection
if not def_point_at(3)(-lsb,1)(inter): % B
message "Should not happen";

fi;
else:
message "PROBLEM (probably the angle ASC too small)";
set_point(3)(1,1,1);

fi;
free_line(inter); free_line(sc); free_line(sa);
free_plane(kp); free_plane(hp);
free_point(k); free_point(h);

Figure 18: Code for figure 19.

right angle is made of two segments, defined us-
ing three points. These three points are new ob-
ject points. For instance, one of the right angles is
created with
def_right_angle(7,8,9,5,1,3);

This means that three points (numbered locally
7, 8, and 9) are introduced and that they are set
according to the angle determined by the triangle of
points (5,1,3).

The drawing, on the other hand, is simpler:
draw_double_right_angle(7,8,9,5);

4.7 Visual complements

4.7.1 Representation of planes

A plane is often represented using four particular
points making a rectangle. These points must be
defined. The drawing of an horizontal rectangle cor-
responding to the (SAC ) plane in figure 19 can be
obtained as follows (see figure 20):

set_point(14)(-2,-2,0); % p1

set_point(15)(11,-2,0); % p2

set_point(16)(11,10,0); % p3

set_point(17)(-2,10,0); % p4

The points are connected with draw_lines.

4.7.2 Hidden parts and visual intersections

As shown on figure 20, there is (currently) no auto-
matic hidden parts removal or a special treatment
of those parts. It is necessary to handle the dashed
lines by hand and this is only practical in the case
of non-moving images. With animations, the per-
spective can be subjected to such variations that it
is advisable to have an automatic solution of the
problem.

However, on a non-moving image, the problem
of removing (or handling in a special way) hidden
parts is rather simple to express and solve. It is ac-
tually a matter of determining “apparent” intersec-
tions between two curves. In the previous example,
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Figure 20: The addition of a plane to the drawing in figure 19.
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Figure 21: The interruption of a plane.

sides of the tetrahedron seem to meet sides of the
rectangle representing the plane, even though they
do not meet in space.

If the plane had to be represented in a clearer
way, the apparent (or visual) intersections of the
sides [BA] and [BC ] with the most distant side of
the rectangle would have to be determined. How
can this be done?

One way is to construct a point of the seg-
ment [p2p3], but as a function of the observer’s po-
sition. The intersection between (Obs, p2, p3) and
(Obs, A,B) is a line going through the observer and
through the point of (p2p3) of interest to us. It
is then sufficient to determine the intersection be-
tween this line and the (p2p3) line. This intersec-
tion being computed in space, care must be taken
that rounding errors can prevent the intersection
of two lines which should otherwise intersect. The
def_inter_p_l_l function finds the middle of the
two points of each line where the line is closest to
the other line. This function also returns the dis-
tance between the two points. This makes it possi-
ble to find a point of (p2p3) corresponding to the vi-

sual interruption caused by the [BA] segment. Simi-
larly, it is possible to find the point corresponding to
the visual interruption caused by the [BC ] segment.
These two points, with p2 and p3, make it possible
to draw a more natural plane. This is what is done
in figure 21.

The def_visual_inter function takes care of
this procedure. It takes four local points and com-
putes a fifth one:

boolean b;

b:=def_visual_inter(i)(j,k,l,m);

If the function returns true, point i is located
on (jk) at the apparent intersection of (jk) and (lm).

It should be noted that in a central perspec-
tive, the computed intersections depend on the ob-
server’s position. If this position changes, the inter-
sections must be recomputed. As a consequence, as
we already indicated it, it is necessary to call the
reset_obj function after the redefinition of the ob-
server’s position.

In a parallel projection, the observer is not used
in the computation of the visual intersection, but
the interface remains the same. The intersections
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are almost computed in the same way, except that
the planes whose intersection is computed are not
determined by the observer and a segment, but by
the projection direction and a segment.

4.7.3 Vanishing points

Figure 22: The three classical vanishing points of
a cube.

The representation of an object containing par-
allel segments in a central perspective shows vanish-
ing lines and points. The projected lines are usually
no longer parallel and intersect. An example of a
cube representation with three vanishing points is
given in figure 22. The classical representations of-
ten distinguish the drawings with one, two or three
vanishing points. The drawings with one or two van-
ishing points are special cases corresponding to lines
which are parallel to the projection plane. In fig-
ure 22, none of the cube’s sides are parallel to the
projection plane, and this leads to vanishing points.
If the projection plane had been parallel to the ver-
tical segments of the cube, these segments wouldn’t
have exhibited vanishing points. If it is a whole face
which is parallel to the projection plane, there is
only one vanishing point left.

The vanishing points correspond to points lo-
cated at the infinite in space, along a direction go-
ing through the observer and directed by a vector
corresponding to the object’s segment. Very often,
some of the vanishing points will be quite distant on
the drawing, and possibly outside the drawing.

The classical representations in architecture or
in painting put two vanishing points on an horizontal
line and a third vanishing point corresponding to the
vertical vanishing lines. Figure 22 differs from that
representation because the observer is not oriented
along a vertical axis.

A different number of vanishing points do not
correspond to different projections, but on the one
hand to objects which are positioned differently in
space with respect to the projection plane, and on
the other hand to objects of different nature. A
sphere will of course have no vanishing point! The
number of vanishing points can actually be any num-
ber, including a number greater than three. It suf-
fices to choose a pair of parallel lines on the ob-

Figure 23: A fourth vanishing point.

ject. Figure 23 shows that besides the three classical
vanishing points, the six vanishing points stemming
from the diagonal segments of the cube can be con-
sidered. One of those is represented on the figure.
(It should be remarked that vanishing points being
very sensitive to the location of the observer, it is
rather difficult to find by hand a location where the
nine vanishing points are simultaneously visible in a
restricted space.) More complex objects would have
even more vanishing points.

A vanishing point can be determined in a sim-
ple way by computing the intersection between the
projection plane and the line going through the ob-
server and oriented by a vector of the object. The
following lines find the vanishing point of the seg-
ment connecting two points numbered 1 and 5:

% defines the projection plane
def_screen_pl(screen);

new_line(l)(1,5);

if not

def_vanishing_point_p_l_pl(11)(l)(screen):

message "no vanishing point";

set_point(11)(0,0,0);

fi;

...

Like for the visual intersections, the vanishing
points depend on the observer’s position and each
time the point of view changes (either because the
observer moves, or because the object moves), the
object points must be recomputed with reset_obj.

It would also be possible to recompute the van-
ishing points directly in the plane. This would be a
mere application of whatever (see section 2).

4.7.4 Shadows

The shadows corresponding to projections are sim-
ulated by shading the projected part. An example
is given in figure 24. In that example, a triangle is
projected on a plane. We have merely computed the
projections of the three vertices of the triangle and
we have then shaded the projection. This technique
works for each projection, as long as the projection
is made along a line and on a plane or a set of planes.
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Figure 24: The cube with a shadow.

5 Modifications with respect to the first
distribution

When we worked on the new version of the 3d pack-
age, we made various changes which seemed to go in
the direction of a greater homogeneity. A number
of elementary functions have been renamed in or-
der to respect our new function naming conventions.
Hence, our first article (Roegel, 1997) on that matter
is now no longer strictly correct because functions
such as vect_sum must be replaced by vec_sum_.
All the “vect” have been replaced by “vec.” Fi-
nally, the creation of vectors and points has slightly
changed. The differences are not especially impor-
tant, but in order to make the transition easier for
the reader, we have put on CTAN a corrected version
of the original article, with differences highlighted.

6 Conclusion and limits

This package contains numerous features which have
not been mentioned and it is easy to add new ones,
in particular concerning the manipulation of new
structures. We silently omitted drawing curves such
as circles which involve another module that will be
described elsewhere. More comprehensive documen-
tation comes with the package.

A study of this article also reveals that the coor-
dinates of a point have only explicitly been used for
a few points constructed directly with set_point_
or set_point. All other points have been obtained
through various geometric operations. It doesn’t
mean that the coordinates are not accessible! They
are given by the functions xval, yval and zval ap-
plied to a vector or point reference.

This package is of course not perfect and has
limits. Besides METAPOST’s limits, in particular in
numerical capacity (the dimensions are bounded to
4096 PostScript points, at least for a normal use),
our package lacks automatic computations. Still

many manual interventions are needed. Other limi-
tations concern (currently) the absence of a decent
and automatic hidden parts removal algorithm. Fi-
nally, error handling in METAPOST will not be sim-
ple for who is not somewhat accustomed with the
language.

This work can of course be compared to other
works going in the same direction. First, it should
be clear that we do not claim to compete with pro-
fessional CAD or computer algebra tools. We want
above all to provide a light and powerful system
helping the creation of geometric constructions, in
particular suited for a geometry class in high school.
In the TEX world, there are to our knowledge only
few works integrating space. METAGRAF (http:
//w3.mecanica.upm.es/metapost), also based on
METAPOST, is an interactive system with a notion
of space, but which doesn’t seem to provide possibil-
ities of geometric constructions, animations, changes
of perspective, etc. The PSTricks system has a 3D
module, but it is relatively undeveloped. The com-
putations are done with TEX and extending the sys-
tem is tedious. Outside the TEX world, various
3D languages are available, in particular OpenGL,
which goes much beyond our system with respect
to rendering. As a teaching tool for geometry, we
should also mention the Cabri-Géomètre software
(cf. http://www.cabri.net).
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