
284 TUGboat, Volume 18 (1997), No. 4

Font Forum

‘Hinting’ of scalable outline fonts

Berthold K.P. Horn

‘Hinting’ refers to methods that guide grid fitting of
continuous glyph outlines onto a discrete grid, such
as those found on a display screen or laser printer.

The need for hinting

Scalable outline fonts — such as fonts in Adobe Type
1 and TrueType format — have continuous shapes
described by mathematical curves. These are used
to create a discrete raster of dots on a display or
hardcopy output device at a specified size. If such
a bitmap is made in a simplistic way — such as sim-
ply blackening each cell whose center lies within the
contour — then a number of visually distracting ar-
tifacts arise — such as misalignments of features and
breaks in shapes, also called ‘drop-outs.’

Typically hinting is used to do things like:
• make sure stems intended to be equally thick

appear equally thick;
• suppress overshoots— rounded letters (O) are

taller than flat ones (X);
• line up features on different glyphs that should

be at the same height;
• avoid ‘drop-outs’;
• keep counters between stems open;
• force consistent spacing between sets of parallel

strokes;
• compensate for ‘misfeatures’ of the rasteriza-

tion algorithm such as drop-outs.

A simple example

A simple demonstration of the need for hinting is the
following: suppose you have the letter ‘H,’ which —
when scaled to the discrete grid of the output de-
vice — happens to have vertical stems from x = 1.2
to x = 2.8 and from x = 4.8 to x = 6.4. So the
original width of both stems is 1.6 pixels.

Now suppose that the rasterizer ‘inks’ every cell
whose center is inside the outline. Also suppose that
the discrete grid of pixels has integer coordinates at
the corners and that we round continuous values to
the pixel centers. Then the discrete version of the
left stem will run from x = 1 to x = 3, while the
discretized version of the right stem goes from x = 5
to x = 6. In the discrete version then, the left stem
is twice as fat as the right stem — a visually very
noticeable difference.

Hinting is very important at low resolution (on
screen, typically 72 dpi or 96 dpi), where it is hard
to get an adequate representation of a continuous
shape on a discrete grid. It is still significant at
medium (laser printer, typically 300 dpi or 600 dpi)
resolution, but is not important at very high resolu-
tion (image setter). ‘Font smoothing’ or anti alias-
ing also reduces the importance of hinting, although
hinting can reduce the number of ‘fuzzy edges’ that
can be distracting in anti-aliased fonts.

Different hinting ‘languages’

Intelligent grid-fitting of continuous shapes onto a
discrete grid requires a mapping that involves more
than simply rounding of x and y coordinates. Much
can be achieved by instead setting up a piece-wise
linear mapping for each coordinate axis, with corner
points at the edges of stems and alignment zones.
An alternative to such a ‘global’ approach is one
that depends instead on individually adjusting coor-
dinates of knots. The latter approach is more pow-
erful, but more awkward to use.

The Adobe Type 1 hinting language is declar-
ative, hence easy to use. Since the ‘brains’ behind
it is in the rasterizer, rasterizing quality of a font
may be improved if an improved rasterizer is release.
However, since the Type 1 rasterizer is not described
anywhere, the exact effect of various hinting meth-
ods can only be ascertained by experiment.

The TrueType hinting language is imperative
and powerful, but also painful to use by compari-
son. The TrueType rasterizer is described, so it is
possible — in principle — to predict what the effects
of a change might be. One reason the TrueType
hinting language needs to be more powerful is that
the underlying rasterizer has misfeatures (like drop-
outs) that need to be ‘patched up’. All the ‘brains’
is in the TrueType font — not in the rasterizer— so
it benefits less from improvements to the rasterizer.

METAFONT also provides methods for grid-fit-
ting outlines, as described in ‘Discreteness and Dis-
cretion,’ chapter 24 of The METAFONTbook. There
is no separate ‘hinting language’ in this case. The
work is done using METAFONT’s built-in mecha-
nisms for enforcing constraints established by equal-
ities or inequalities.

Hint switching and delta hints

Quality hinting code is tightly interlaced with the
program that draws the glyph, since different ‘hints’
may apply to different parts of the glyphs. This is
called ‘hint switching’.

For a simple example, let us consider the ‘R’ in
CMR10. It has a slab lying on the baseline at the

TUGboat, Volume 18 (1997), No. 4 285

bottom of the left leg and a curled shape that drops
below the baseline on the right leg. If horizontal
stem hints are applied to correctly grid fit the slab
on the left leg, then the right leg will be drawn be-
low the baseline, even at very small sizes where this
looks ‘wrong’ and where pulling the right leg up to
the baseline produces a visually more pleasing re-
sult. Conversely, if a horizontal stem hint were to
be tuned for the curl in the right leg, then the slab
at the bottom of the left leg would tend to be ras-
terized floating above the baseline. To get the best
rasterization at all sizes, the glyph has to be split
into two parts and the right leg rasterizered with
different hints than those used for the left.

While simple shapes (like a sans serif ‘H’) re-
quire no hint switching at all, some complex shapes
such as the ‘Weierstrass p’ (℘) may require many
switches.

TrueType provides a mechanism called ‘delta
hinting’ which makes it possible to make correc-
tions specific to particular resolutions (measured in
ppem — pixels per ‘em’). This is useful in correct-
ing drop-outs which occur over certain size ranges.
A glyph has to be checked at all sizes that a user
is likely to use (‘waterfalls’), and drop-outs patched
up using delta hints that apply at those sizes. It is
possible to draw a complete bitmap using TrueType
hinting code.

Type 1 fonts use a different (undocumented)
rasterization algorithm that first creates a continu-
ous outline that has no drop-outs, but that is ap-
proximately 1/2 pixel too wide all the way around.
It then erodes this outline using Euler-number-pre-
serving binary image operations — which cannot in-
troduce drop-outs. Hence there is no need to ‘patch
up’ the result.

Hint types and hinting tools

Some hints are font wide, such as information on
‘alignment zones,’ dominant stem widths, and over-
shoot suppression. But the bulk of hinting code is at
the character level. Often the character level code is
designed to interact with the font level code (e.g. so-
called ‘ghost’ stems interacting with font level align-
ment zones at x-height, cap-height, figure-height, as-
cender, descender heights and so on).

Some simple types of hints follow systematic
rules and can be generated automatically by some
applications such as Fontographer, FontLab, Type-
Designer, and Ikarus. Others require judgement;
quality hinting is more of an art than a science. For
example, you get to choose (roughly speaking) be-
tween preserving more of the unique character of a

particular face at small sizes versus making it more
readable.

There are few good tools for doing quality man-
ual hinting. For Type 1 fonts, most font generation
software has some support for manipulating hints
graphically. Type Designer even provides for hint
switching. But without being able to see clearly
what hints go where, it isn’t really good enough to
be useful. For TrueType, the only hinting tools are
from Type Solutions in New Hampshire.

The quality of fonts and of rasterizers

Note that the ‘hinting’ code can be a substantial
part of a font, particularly in the case of quality
TrueType fonts. If you pass one of the Microsoft
core fonts (Arial, Times New Roman, and Courier
New) through one of the font generation tools you
will see a dramatic drop in size as a result of the
fact that the original hints are lost. In some cases
quality TrueType fonts shrink by almost 50% (and
lose their quality, of course) by this kind of liposuc-
tion. Type 1 font hinting is simpler and so rarely
adds more than 10% to 20% to file size.

Hinting code is interpreted by the rasterizer and
so its effectiveness depends on how well the raster-
izer makes use of it. Adobe Type Manager (ATM)
does the best job for fonts in Type 1 format, with
PostScript interpreters in printers typically not be-
ing quite as sophisticated. Various Display PostScript
systems mostly do not do as well as ATM either.
This may change as Adobe upgrades PostScript in-
terpreters under its control. Naturally ‘clones’ don’t
do as well.

Moral

Use only quality fonts. Fonts on those discs that
offer ‘a zillion fonts for $29.95’ are mostly poorly
made derivatives of the real thing. Typically the
original hinting is stripped out (perhaps because it
is thought to be better protected by copyright than
the rest of the font program).

References

Adobe Systems Inc. Adobe Type 1 Font Format.
Addison-Wesley, 1.1 edition, 1993.

Adobe Systems Inc. “Font Hint Information”.
http://www.adobe.com/supportservice/
devrelations/typeforum/hinting.html,
1997. Includes references to electronic copies
of the Type 1 format specification and related
information.

Apple Computer, Inc. Inside Macintosh/ Text.
Apple technical library. Addison-Wesley,
Reading, MA, USA, 1993.

286 TUGboat, Volume 18 (1997), No. 4

Apple Computer, Inc. “How the Font Manager
Renders Outline Fonts”. http://devworld.
apple.com/dev/techsupport/insidemac/
Text/Text-199.html, 1997. From the book
Inside Macintosh/ Text, chapter 4.

Hersch, Roger D. and C. Betrisey. “Advanced Grid
Constraints: Performance and Limitations”. In
Raster Imaging and Digital Typography, edited
by R. A. Morris and J. André, pages 190–204.
Cambridge University Press, 1991a.

Hersch, Roger D. and C. Betrisey. “Model-based
Matching and Hinting of Fonts”. Computer
Graphics 25(4), 71–80, 1991b. Proceedings of
SIGGRAPH’91.

Karow, Peter. “Automatic Hinting for Intelligent
Font Scaling”. In Raster Imaging and Digital
Typography, edited by J. André and R. D.
Hersch, pages 233–241. Cambridge University
Press, 1989.

Karow, Peter. Digitale Schriften — Darstellung und
Formate. Springer-Verlag, 1992.

Knuth, Donald E. The METAFONTbook, volume C
of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.

Lee Hetherington, I. and P. Tutelaers. “Type 1
utility programs”. Available from CTAN

fonts/utilities/t1utils, 1992. A set of
programs for examining Type 1 fonts.

Penney, Laurence. “TrueType Typography”. http:
// www.truetype.demon.co.uk/tthints.htm,
1997.

Studio Verso. “Font Discussion: Hinting”.
http://fonts.verso.com/hinting/, 1996.
Comments from a W3C discussion of Web fonts
in November 1996.

The Microsoft Corporation. “Features of
TrueType: TrueType Hinting”. http://
www.microsoft.com/truetype/hinting/
hinting.htm, 1996.

Type Solutions, Inc. “Type Solutions TrueType
hinting software: Visual TypeMan and Visual
StingRay”. http://www.typesolutions.com/
TTTools.html, 1997.

� Berthold K.P. Horn
Y&Y, Inc.
45 Walden St.
Concord, MA 01742 USA
bkph@ai.mit.edu

