
TUGboat, Volume 14 (1993), No. 2

Letters

Truth in Indexing

Jonathan Fine reports in TUGboat 13 #4, page 495,

under the heading "Too Many Errors", that Knuth

is in error when he uses the index-reminder scheme

described on pages 424-425 of The W b o o k . Pad-

ding the page numbers is irrelevant; check Knuth's

original version in the lower display on page 424,

where you will surely notice the \noexpand to which

Fine objects. As a matter of fact, Knuth himself pro-

duced just the "error" Fine describes when prepar-

ing the index for Concrete Mathematics, at least in

the first impression of that volume. Look up Chris-

tian Goldbach in the index for the first printing; the

page number given there is 583 but Goldbach is only

mentioned in the first line of page 584.

I wonder if Fine has overlooked the paragraph

divided between pages 424 and 425 of The W b o o k ,

in which Knuth describes his philosophy regarding

index construction. He may also have overlooked

several references in the tutorials in volumes 10, 11,

and 12 of TUGboat, to my belief that automation

can sometimes be carried to excess. Indeed, the ef-

fort required to avoid the necessity for proof reading

one's document by automating all of its components

that might be subject to automation will often be

significantly greater than the effort needed to ac-

complish the task with reasonable restraint in this

regard. Wherever we concentrate our efforts. we are

still required to pay close attention to the results

generated by them.

The only printings of Concrete Mathematics

that I have seen, so far, are the first and sixth.

Studying the differences between them can be both

entertaining and informative, even in connection with

the bibliography and the index. Between these two

printings, two additional items were interpolated be-

fore the entry that originally appeared at the top

of page 584 of the bibliography, hence the problem

with which Fine was so concerned vanished as a re-

sult of natural causes. There are at least two pos-

sibilities: One's book is so popular that it must be

reprinted frequently and in the process trivial errors

that do not vanish automatically are easily fixed; if

the book doesn't require reprinting, it may be that

it has few readers or none, in which case the distinc-

tion between gross errors and trivial errors simply

evaporates.

Let me propose, for further discussion in this

context, what I would like to call the Occam-Ludd

Razor: Entities should no t be multiplied beyond ne-

cessity, and automation should be encouraged when

i t simplifies things and avoided when it does not.

Lincoln Durst

46 Walnut Road

Barrington, RI 02806 U.S.A.

LKDQMath.AMS.org

Macros

Letter-Spacing in

Philip Taylor

0
ne of the joys of looking at a page of m s e t

material, particularly when compared to the

majority of today's magazines, is the uniform

grayness of the page. Whereas many of today's top-

end DTP packages frequently achieve justification

through the use of letter-spacing, prefers to dis-

tribute any spare white space between words rather

than between letters. Indeed, there are no intrinsic

facilities within which would permit the use of

letter-spacing, even were it desired.

And yet, there are times when letter-spacing is

effective: in running heads, for example, or for mast-

heads or titles. In some languages, letter-spacing

(then more properly termed Sperrsatz) is used for

stress or emphasis, much as we use italicisation in

English. For these purposes, then, rather than as

a general letter-spacing tool, I have developed the

following code, which allows at most a single line

of text to be letter-spaced. It is worth pointing

out straight away that there are some restrictions

on the text, although considerably fewer than in

earlier releases: it should not, for example, contain

unprotected \accents, (neither explicit, using the

\accent primitive, nor implicit, through the use of

control symbols as \ '), although either form may

be used provided that the accent and its accompa-

nying letter are concealed within a brace-delimited

group; control-sequences without arguments may

occur in the text to be typeset, but if they expand

to text, that text will not be letter-spaced, and thus

it is difficult, although not impossible, to typeset

T H E J O Y O F L E T T E R - S P A C E D T E X !

(And, of course, it should contain no lower-case

text: "A man who would letter-space lower-case

TUGboat, Volume 14 (1993), No. 2

text would probably steal sheep [Gaudy]"). But

these are the only restrictions: provided that the

text is straightforward, considerable flexibility is

offered in the degree of letter-spacing achieved.

The design desideratum was very simple: cre-

ate a \ le t te rspace macro which would provide at

least the same degree of flexibility in determining

the degree of letter-spacing as l$J already provides

for the specification of \hboxes and \vboxes, and

using the same syntax. Thus we must allow \ l e t -

terspace {text), \ l e t te rspace t o dimen {text)

and \ le t te rspace spread dimen (text). In ad-

dition, I sought to provide even greater flexibility,

by providing the user with additional information

concerning the text to be letter-spaced: in partic-

ular, its natural height, depth and width. These

are all made available through reserved T$$ con-

trol sequences: \naturalheight , \naturaldepth

and \naturalwidth. By combining the two, a

very elegant syntax is provided for letter-spacing

text: for example, \ le t te rspace t o 1 .5 \nat-

uralwidth {text), or \ le t te rspace spread 0 .5

\naturalwidth {text) (both of which have the

same effect).

The code is presented twice: once as a mono-

lithic entity, so that the reader can take in its

structure at a glance, and once in annotated form,

so that its inner workings can be clarified; first the

code as monolithic entity:

0 . .

LLL Open control sequences

* * .
L/.L Concealed control sequences

\def \space { 3

\def \hsss

{\hskip 0 pt plus 1 fill minus 1 fill\relax)

. . a
LLL Primary (user-level) macro

, a .
LLL Secondary (implementation-level) macro

,,.
ALL Tertiary (implementation-level) macro

I I I

LLL Adjunct macros -- list partitioning

. s o
LLL Adjunct macros -- <space> . . . -> {<space>) . . .

TUGboat. Volume 14 (1993), No. 2

%%% re-instate category code of commercial-at

The same code is now presented in annotated form,

each group of declarations, and each individual

macro, being preceded by a discussion of their pur-

pose and functionality:

As far as is possible, 'inaccessible' control se-

quences (i.e. control sequences containing one or

more commercial-at s) are used to minimise the

risk of accidental collision with user-defined macros;

however, the control sequences used to access the

natural dimensions of the text are required to be

user accessible, and therefore must contain only

letters.

... /./.A Open control sequences

All control sequences defined hereafter are inaccessi-

ble to the casual user, including the control sequence

used to store the category code of commercial-at;

this catcode must be saved in order to be able to

re-instate it at end of module, as we have no idea

in what context the module will be \input. Having

saved the catcode of commercial-at, we then change

it to 11 (i.e. that of a letter) in order to allow it to

be used in the cs-names which follow.

... /,/,/. Concealed control sequences

\expandaf ter \chardef

\csname \string Qcode\endcsname =

\the \catcode '\Q

\catcode '\@ = 11

We will need a box register in order to measure the

natural dimensions of the text, and a token-list reg-

ister in which to save the tokens to be letter-spaced.

We will need to test whether a particular macro

expands to a space, so we will need another macro

which does so expand with which to compare it; we

will also need a 'more infinite' variant of \hss.

\def \spQce { 3
\def \hsss

{\hskip 0 pt plus 1 fill minus 1 fill\relax)

Many of the macros will use delimited parameter

structures, typically terminated by the reserved

control sequence \and; we make this a synonym for

the empty macro (which expands to nothing), so

that should it accidentally get expanded there will

be no side effects. We also define a brief synonym

for \expandafter, just to keep the individual lines

of code reasonably short.

We will also need to compare a token which has

been peeked at by \ fu tu re l e t with a space to-

ken; because of the difficulty of accessing such a

space token (which would usually be absorbed by a

preceding control word), we establish \spacetoken

as a synonym. The code to achieve this is messy,

because of the very difficulty just outlined, and so

we 'waste' a control sequence \tamp; we then return

this t o the pool of undefined tokens.

The user-level macro \ l e t t e r space has exactly the

same syntax as that for \hbox and \vbox, as ex-

plained in the introduction; the delimited parameter

structure for this macro ensures that everything up

to the open brace which delimits the beginning of

the text to be letter-spaced is absorbed as parameter

to the macro, and the brace-delimited text which

follows is then assigned to the token-list register

\ l@tterspacetoks; \afterassignment is used to

regain control once the assignment is complete.

. . .
/.k Primary (user-level) macro

TUGboat, Volume 14 (1993), No. 2

Control then passes to \ lQt te rspace , which starts

by setting an \hbox containing the text to be type-

set: the dimensions of this box (and therefore of the

text) are then saved in the open control sequences

previously declared, and the \hbox becomes of no

further interest.

A new \hbox is now created, in which the same

text, but this time letter-spaced, will be set; the

box starts and ends with \hss glue so that if only a

single character is to be letter-spaced, it will be cen-

tered in the box. If two or more characters are to be

letter-spaced, they will be separated by \hsss glue,

previously declared, which by virtue of its greater

degree of infinity will completely override the \hss

glue at the beginning and end; thus the first and last

characters will be set flush with the edges of the box.

The actual mechanism by which letter-spacing

takes place is not yet apparent, but it will be seen

that it is crucially dependent on the definition of

\ lQt tQrspace , which is expanded as the box is

being set; the \Qx (\expandafter) causes the ac-

tual tokens stored in \ lQtterspacetoks to be made

available as parameter to \ lQt t@rspace rather than

the token-list register itself, as it is these tokens

on which \ lQt tQrspace will operate. The \Qnd

terminates the parameter list, and the C) which

immediately precedes it ensures that that there is

always a null element at the end of the list: with-

out this, the braces which are needed to protect an

accentlcharacter pair would be lost if such a pair

formed the final element of the list, a t the point

where they are passed as the second (delimited) pa-

rameter t o \ pQr t i t iQn ; by definition, 7&X removes

the outermost pair of braces from both simple and

delimited parameters during parameter substitution

if such braces form the first and last tokens of the

parameter, and thus if a brace-delimited group ever

becomes the second element of a two-element list,

the braces will be irrevocably lost. The 0 ensure

that such a situation can never occur.

. a .
/.I!/. Secondary (implementation-level) macro

The next macro is \ lQttQrspace, which forms

the crux of the entire operation. The text to be

letter-spaced is passed as parameter to this macro,

and the first step is to check whether there is, in

fact, any such text; this is necessary both to cope

with pathological usage (e.g. \ le t te rspace O),
and to provide an exit route, as the macro uses

tail-recursion to apply itself iteratively to the 'tail'

of the text to be letter-spaced; when no elements

remain, the macro must exit.

Once the presence of text has been ensured, the

token-list representing this text is partitioned into

a head (the first element), and the tail (the remain-

der); at each iteration, only the head is considered,

although if the tail is empty (i.e. the end of the list

has been reached), special action is taken.

If the first element is a space, it is treated spe-

cially by surrounding it with two globs of \hsss

glue, to provide extra stretchability when compared

to the single glob of \hsss glue which will sepa-

rate consecutive non-space tokens; otherwise, the

element itself is yielded, followed by a single glob of

\hsss glue. This glue is suppressed if the element

is the last of the list, to ensure that the last token

aligns with the edge of the box.

When the first element has been dealt with,

the macro uses tail recursion to apply itself to the

remaining elements (i.e. to the tail); \Qx (\expand-

a f t e r) is again used to ensure that the tail is

expanded into its component tokens before being

passed as parameter.

. , .
ALL Tertiary (implementation-level) macro

The operation of token-list partitioning is conceptu-

ally simple: one passes the token list as parameter

text to a macro defined to take two parameters,

the first simple and the second delimited; the first

element of the list will be split off as parameter-1,

TUGboat, Volume 14 (1993), No. 2

and the remaining material passed as parameter-2.

Unfortunately this naive approach fails when the

first element is a bare space, as the semantics of

prevent such a space from ever being passed

as a simple parameter (it could be passed as a de-

limited parameter, but as one does not know what

token follows the space, defining an appropriate de-

limiter structure would be tricky if not impossible).

The technique used here relies upon the adjunct

macro \mOkespacexplicit , which replaces a lead-

ing bare space by a space protected by braces; such

spaces may legitimately be passed as simple param-

eters. Once that operation has been completed. the

re-constructed token list is passed to \pQrt it i@n,

which actually performs the partitioning as above;

again \Qx (\expandafter) is used to expand \bQdy

(the re-constructed token list) into its component

elements before being passed as parameter text.

...
LLL Adjunct macros -- l i s t p a r t i t i o n i n g

The operation of making a space explicit relies on

prescience: the code needs to know what token

starts the token list before it knows how to pro-

ceed. Prescience in m is usually accomplished by

\ fu tu re l e t , and this code is no exception: \fu-

t u r e l e t here causes \haad to be \ l e t equal to

the leading token, and control is then ceded to

\mOkesp@cexplicit.

The latter compares \hQad with \spQcetoken

(remember the convolutions we had to go through

to get \spOcetoken correctly defined in the first

place), and if they match (i.e. if the leading token is

a space), then \bQdy (the control sequence through

which the results of this operation will be returned)

is defined t o expand to a protected space (a space

surrounded by braces), followed by the remainder

of the elements; if they do not match (i.e. if the

leading token is not a space), then \b@dy is simply

defined to be the original token list, unmodified.

If the leading token was a space, it must be re-

placed by a protected space: this is accomplished

by \prQtectspace.

The \pr@tectspace macro uses a delimited pa-

rameter structure. as do most of the other macros

in this suite, but the structure used here is unique,

in that the initial delimiter is a space. Thus, when

a token-list starting with a space is passed as pa-

rameter text, that space is regarded as matching

the space in the delimiter structure and removed:

the expansion of the macro is therefore the tokens

remaining once the leading space has been removed,

preceded by a protected space C 1.

. . . /./.!. Adjunct macros -- <space> . . . -> {<space>) . . .

The final step is to re-instate the category code of

commercial-at .

%%% r e - in s t a t e category code of commercial-at

Thus letter-spacing is accomplished. The author

hopes both that the code will be found useful and

that the explanation which accompanies it will be

found informative and interesting.

o Philip Taylor
The Computer Centre, RHBNC,

University of London, U.K.

<P.TaylorQVax.Rhbnc.Ac.Uk>

