TUGboat, Volume 11 (1990), No. 1

Virtual Fonts: More Fun for Grand Wizards
Donald Knuth

Many writers to TEXhax during the past year or so
have been struggling with interfaces between differ-
ing font conventions. For example, there’s been a
brisk correspondence about mixing oldstyle digits
with a caps-and-small-caps alphabet. Other people
despair of working with fonts supplied by manu-
facturers like Autologic, Compugraphic, Monotype,
etc.: still others are afraid to leave the limited
accent capabilities of Computer Modern for fonts
containing letters that are individually accented as
they should be, because such fonts are not read-
ily available in a form that existing TEX software
understands.

There is a much better way to solve such
problems than the remedies that have been proposed
in TgXhax. This better way was first realized
by David Fuchs in 1983, when he installed it
in our DVI-to-APS software at Stanford (which
he also developed for commercial distribution by
ArborText). We used it, for example, to typeset my
article on Literate Programming for The Computer
Journal, using native Autologic fonts to match the
typography of that journal.

I was expecting David's strategy to become
widely known and adopted. But alas—and this
has really been the only significant disappointment
I've had with respect to the way TEX has been
propagating around the world —nobody else’s DVI-
to-X drivers have incorporated anything resembling
David’s ideas, and TEXhax contributors have spilled
gallons of electronic ink searching for answers in the
wrong direction.

The right direction is obvious once you've seen
it (although it wasn’t obvious in 1983): All we
need is a good way to specify a mapping from
TEX's notion of a font character to a device's
capabilities for printing. Such a mapping was called
a “virtual font” by the AMS speakers at the TUG
meetings this past August. At that meeting I spoke
briefly about the issue and voiced my hope that
all dvi drivers be upgraded within a year to add a
virtual font capability. Dave Rodgers of ArborText
announced that his company would make their WEB
routines for virtual font design freely available, and
I promised to edit them into a form that would
match the other programs in the standard TEXware
distribution.

The preparation of TEX Version 3 and MF
Version 2 has taken me much longer than expected,
but at last I've been able to look closely at the

13

concept of virtual fonts. (The need for such fonts
is indeed much greater now than it was before,
because TEX’s new multilingual capabilities are
significantly more powerful only when suitable fonts
are available. Virtual fonts can easily be created to
meet these needs.)

After looking closely at David Fuchs’s orig-
inal design, I decided to design a completely
new file format that would carry his ideas fur-
ther, making the virtual font mechanism completely
device-independent; David’s original code was very
APS-specific. Furthermore I decided to extend his
notions so that arbitrary dvi commands (including
rules and even specials) could be part of a virtual
font. The new file format I've just designed is called
vf: it's easy for dvi drivers to read vf files, because
vf format is similar to the pk and dvi formats they
already deal with. !

The result is two new system routines called
VFtoVP and VPtoVF. These routines are extensions
of the old ones called TFtoPL and PLtoTF; there's a
property-list language called VPL that extends the
ordinary PL format so that virtual fonts can be
created easily.

In addition to implementing these routines, I've
also tested the ideas by verifying that virtual fonts
could be incorporated into Tom Rokicki’'s dvips
system without difficulty. I wrote a C program
(available from Tom) that converts Adobe afm files
into virtual fonts for TEX; these virtual fonts include
almost all the characteristics of Computer Modern
text fonts (lacking only the uppercase Greek and
the dotless j) and they include all the additional
Adobe characters as well. These virtual fonts even
include all the “composite characters” listed in the
afm file, from ‘Aacute’ to ‘zcaron’; such characters
are available as ligatures. For example, to get
‘Aacute’ you type first ‘acute’ (which is character
19 = ~S in Computer Modern font layout; it could
also be character 194 = Meta-B if you're using
an 8-bit keyboard with the new TEX) followed by
‘A’. Using such fonts, it's now easier for me to
typeset European language texts in Times-Roman
and Helvetica and Palatino than in Computer
Modern! [But with less than an hour’s work I
could make a virtual font for Computer Modern
that would do the same things; I just haven’t gotten
around to it yet.]

[A nice ligature scheme for dozens of European
languages was just published by Haralambous in
the November TUGboat. He uses only ASCII char-
acters, getting Aacute with the combination <A. I
could readily add his scheme to mine, by adding a

14

few lines to my vpl files. Indeed, multiple conven-
tions can be supported simultaneously (although I
don’t recommend that really).]

Virtual fonts make it easy to go from dvi files
to the font layouts of any manufacturer or font
supplier. They also (I’'m sorry to say) make “track
kerning” easy, for people who have to resort to that
oft-abused feature of lead-free type.

Furthermore, virtual fonts solve the problem
of proofreading with screen fonts or with lowres
laserprinter fonts, because you can have several
virtual fonts sharing a common tfm file. Suppose,
for example, that you want to typeset camera copy
on an APS machine using Univers as the ultimate
font, but you want to do proofreading with a screen
previewer and with a laserprinter. Suppose further
that you don’t have Univers for your laserprinter;
the closest you have is Helvetica. And suppose
that you haven’t even got Helvetica for your screen,
but you do have cmsslQ. Here's what you can
do: First make a virtual property list (vpl) file
univers-aps.vpl that describes the high-quality
font of your ultimate output. Then edit that file
into univers-laser.vpl, which has identical font
metric info but maps the characters into Helvetica;
similarly, make univers-screen.vpl, which maps
them into cmss10. Now run VPtoVF on each of the
three vpl files. This will produce three identical
tfm files univers.tfm, one of which you should

An Excerpt from VFtoVP.web

6. Virtual fonts.

TUGboat, Volume 11 (1990), No. 1

put on the directory read by TgX. You'll also
get three distinct vf files called univers.vf, which
you should put on three different directories —one
directory for your DVI-to-APS software, another for
your DVI-to-laserwriter software, and the third for
the DVI-to-screen previewer. Voila.

So virtual fonts are evidently quite virtu-
ous. But what exactly are virtual fonts, detail-
wise? Appended to this message are excerpts from
VFtoVP.web and VPtoVF.web, which give a complete
definition of the vf and vpl file formats.

I fully expect that all people who have imple-
mented dvi drivers will immediately see the great
potential of virtual fonts, and that they will be
unable to resist installing a vf capability into their
own software during the first few months of 1990.
(The idea is this: For each font specified in a dvi
file, the software looks first in a special table to see
if the font is device-resident (in which case the tfm
file is loaded, to get the character widths); failing
that, it looks for a suitable gf or pk file; failing that,
it looks for a vf file, which may in turn lead to other
actual or virtual files. The latter files should not be
loaded immediately, but only on demand, because
the process is recursive. Incidentally, if no resident
or gf or pk or vf file is found, a tfm file should be
loaded as a last resort, so that the characters can
be left blank with appropriate widths.)

The idea behind VF files is that a general interface mechanism is needed

to switch between the myriad font layouts provided by different suppliers of typesetting
equipment. Without such a mechanism, people must go to great lengths writing inscrutable
macros whenever they want to use typesetting conventions based on omne font layout in
connection with actual fonts that have another layout. This puts an extra burden on the
typesetting system, interfering with the other things it needs to do (like kerning, hyphenation,
and ligature formation).

These difficulties go away when we have a “virtual font,” i.e., a font that exists in a logical
sense but not a physical sense. A typesetting system like TEX can do its job without knowing
where the actual characters come from; a device driver can then do its job by letting a VF
file tell what actual characters correspond to the characters TEX imagined were present. The
actual characters can be shifted and/or magnified and/or combined with other characters
from many different fonts. A virtual font can even make use of characters from virtual fonts,
including itself.

Virtual fonts also allow convenient character substitutions for proofreading purposes, when
fonts designed for one output device are unavailable on another.

7. A VF file is organized as a stream of 8-bit bytes, using conventions borrowed from DVI
and PK files. Thus, a device driver that knows about DVI and PK format will already contain
most of the mechanisms necessary to process VF files. We shall assume that DVI format is

TUGboat, Volume 11 (1990), No. 1

understood; the conventions in the DVI documentation (see, for example, TEX: The Program,
part 31) are adopted here to define VF format.

A preamble appears at the beginning, followed by a sequence of character definitions,
followed by a postamble. More precisely, the first byte of every VF file must be the first byte
of the following “preamble command”:

pre 247 i[1] k[1] z[k] cs[4] ds[4]. Here i is the identification byte of VF, currently 202. The
string x is merely a comment, usually indicating the source of the VF file. Parameters cs
and ds are respectively the check sum and the design size of the virtual font; they should
match the first two words in the header of the TFM file, as described below.

After the pre command, the preamble continues with font definitions; every font needed to

specify “actual” characters in later sef_char commands is defined here. The font definitions
are exactly the same in VF files as they are in DVI files, except that the scaled size s is relative
and the design size d is absolute:
fnt_def1 243 k[1] c[4] s[4] d[4] a[1] I[1] n[a + I]. Define font k, where 0 < k < 256.
fnt_def2 244 k[2] c[4] s[4] d[4] a[1] I[1] n[a + I]. Define font k, where 0 < k < 65536.
fnt_def3 245 k[3] c[4] s[4] d[4] a[1] I[1] n[a +]. Define font k, where 0 < k < 2%4.
fnt.def} 246 k(4] c[4] s[4] d[4] a[1] I[1] n[a + I]. Define font k, where —23! < k < 231,
These font numbers k are “local”; they have no relation to font numbers defined in the DVI
file that uses this virtual font. The dimension s, which represents the scaled size of the local
font being defined, is a fiz_word relative to the design size of the virtual font. Thus if the
local font is to be used at the same size as the design size of the virtual font itself, s will be
the integer value 22°. The value of s must be positive and less than 224 (thus less than 16
when considered as a fiz word). The dimension d is a firword in units of printer’s points;
hence it is identical to the design size found in the corresponding TFM file.

define id_byte = 202

(Globals in the outer block 7) =

uf_file: packed file of 0 .. 255;

See also sections 10, 12, 20, 23, 26, 29, 30, 37, 42, 49, 51, 54, 67, 69, 85, 87, 111, and 123.
This code is used in section 2.

8. The preambile is followed by zero or more character packets, where each character packet
begins with a byte that is < 243. Character packets have two formats, one long and one
short:

long_char 242 pl[4] cc[4] tfm[4] dvi[pl]. This long form specifies a virtual character in the
general case.

short_charQ .. short.char241 pl[1] cc[1] tfm[3] dvi[pl]. This short form specifies a virtual
character in the common case when 0 < pl < 242 and 0 < cc < 256 and 0 < tfm < 224,

Here pl denotes the packet length following the ¢fm value; cc is the character code; and tfm
is the character width copied from the TFM file for this virtual font. There should be at most
one character packet having any given cc code.

The dvi bytes are a sequence of complete DVI commands, properly nested with respect
to push and pop. All DVI operations are permitted except bop, eop, and commands with
opcodes > 243. Font selection commands (fnt_num0 through fnt{) must refer to fonts defined
in the preamble.

Dimensions that appear in the DVI instructions are analogous to fiz_word quantities; i.e.,
they are integer multiples of 272° times the design size of the virtual font. For example, if
the virtual font has design size 10 pt, the DVI command to move down 5 pt would be a down
instruction with parameter 2!°. The virtual font itself might be used at a different size, say
12 pt; then that down instruction would move down 6 pt instead. Each dimension must be
less than 224 in absolute value.

15

