TUGboat, Volume 1, No. 1

TEX-PASCAL has been distributed to more cen-
ters: Stanford Linear Accelerator Center, University
of Aarhus in Denmark, Universities of Milan and
Pisa in Italy, University of Valencia in Spain, etc.
The ones mentioned above have given the most feed-
back.

At this time, it seems that most pioneer instal-
lations are free of compilation problems and are
now trying to obtain adequately interfaced output
devices, together with fonts and font information
files suitable for them.

The only fully operational PTEX system is still
this at Stanford CSD, but we expect to be printing
DVI1lles produced by the CIT installation very soon.

CoMrPILER 15SUES:

TEX-PASCAL was developed using the Hamburg
PASCAL compiler for the PDP-10 by Kisicki and
Nagel. Some compiler maintenance was needed
during the debugging of PTEX. We have found this
to be a rather powerful and permissive compiler.

There have only been three system requirements
on PTEX hosts and these were explicit since the
beginning of the project:

— The system must have enough addressable
memory to store the large arrays employed by
PTEX (about 128K words of 32 bits).

~ The compiler should be able to really pack fields
of a PACKED RECORD and overlap multiple
variants of packed records. Hf this requisite is
not satisfled, PTEX will require at least four
times as much memory.

~— The compiler should be able to handle large
case statements (say over 64 actual cases in a
range [—500..500]) and have a default case (this
is non-standard in PASCAL but available in
most compilers).

Additionally, PTEX requires an EXTERNAL (or
separate) compilation facility. If no such thing is
available, the SYSDEP module has to be inserted
both in TEX and in TEXPRE by hand. Also, if
there is no compile time variable initialization, the
INITPROCEDURE appearing in the program has
to be changed into an ordinary procedure.

We have fought not to add more requirements
and have changed the program to facilitate the in-
stallation with simpler or more restrictive compilers.
Encountered problems have been common to most
pioneer installations:

~ lines of code were too long

- octal constants were not accepted

~ identiflers containing the underscore character

were not accepted

- some identifiers were too long

17

- sometimes two different identifiers were equal in
the first eight characters

- flelds of packed records couid not be passed as
procedure arguments

- loop counters had to be local variables

~ all declared labels had to be used

- use of GOTOs was restricted: not even allowed
from the body of a procedure out to the block
in which the procedure was declared

— there were discrepancies in the treatment of
nested WITH statements

— the compiler lacked the standard MAX and
MIN functions

- procedures had to be kept small (less than 400
statements)

The program has been modified to avoid them.
Currently, the code is all uppercase in lines that are
never longer than 72 characters. All identifiers are
shorter than 16 characters and differ in the first 8
characters. Octal variables appear only in SYSDEP.

DisTRiBUTION:

Currently, TgX-PASCAL can be obtained from
the TEX group at the CS Dept. at Stanford. Anyone
asking for the system will get a tape containing
the files TEX.PAS, TEXPRE.PAS, SYSDEP.PAS,
TEX.STR, TEXPRE.STR, and SYSDEP.STR,
which is about everything that is needed to have
PTEX running. The distribution package also con-
tains a short installation guide, a description of
the DVI format of the output file of TEX, and
extensively documented listings of TEX, TEXPRE
and SYSDEP. (Of course, the ultimate documenta-
tion on TEX is the TEX manual.) All these flles
(not the listings) are available on-line in the direc-
tory (TEX.PASCAL)%SCORE, accessible via the
ARPANET.

Fonts and font information flles may also be
provided on request (in the format employed here
at SAIL). These files are very system-and-output-
device-dependent and of restricted general value for
that redson.

* % % * * % % % 3z 8

THE FORMAT OF TgX'S DVI FILES
David Fuchs

DVI files contain information about where charac-
ters go on pages. The format is such that there are
those who claim that almost any reasonable device
can be driven by a program that takes DV] flles as
input. In particular, DVI flles can be sent to the
Xerox Graphics Printer (XGP), Versatec, Canon or

18

Alphatype at the Stanford CS Dept., depending on
what spooler it is passed to. The format follows.

The basic unit of information in a DVI file comes
in an 8-bit chunk. Here at Stanford, they are packed
four per word, in the lower-order 32 bits of each
word, and the highest-order chunk is considered to
be before the others, etc.

The DVI file contains a number of Pages followed
by a Postamble. Each Page starts with a BOP
command, has lots of other commands, and ends
with an EOP command. Each EOP command is
immediately followed by another BOP command, or
the PST command, which means that there are no
more Pages in the file, and the Postamble follows.
See below for details on all the commands that occur
in Pages, and what goes in the Postamble. ‘

Each Page consists of a number of Commands
that specify what characters should be typeset
where. Who- or what-ever reads these Pages should
have a Stack that can hold, say, 200 coordinates (i.e.
integers) to be on the (very) safe side.

There iz a notion of the “current position on the
page”, which is specified by its horizontal and ver-
tical coordinates. Moving rightwards on a page
is represented by an increase in the H-coordinate,
while moving down is an increase in V, and the
upper-left-hand corner of the page is 0,0 (i.e. it’s
slightly non-cartesian). Coordinates are given in
reu’s (ridiculously small units), where lrsu =
1/218 points. This is so that accumulated errors will
be undetectable even in the worst imaginable case
{a *box many feet long). Whenever a character
or rule is set, it gets put at the current position
on the page. The current position on the page is
changed by explicit move commands (their names
begin with W,X,Y, and Z). It can also change as
a side effect of setting a character or rule (the 0-
127 and VERTRULE commands). The w-, x-, y-,
and z-amounts are not locations, but distances (in
rsu’s). Some commands change their values, and
some cause the current H- or V-coordinate to be
incremented by one of their current values.

A lower-case character with a bracketed number
following a command means that the command has
a parameter that is that many bytes long. Thus, the
BOP command, for instance, is 9 bytes long, the first
byte of which has the decimal value 129, the second
through fitth of which give the page number (high
order byte first), and the sixth through ninth being
another number which is explained below. These
numbers are in two’s complement, so they should be
sign-extended on the left when they are read.

133 POP

TUGDbDoat, Volume 1, No. 1

The commands are:
Command Description

0 to 127 Set the appropriate character from the
current font such that its reference point
is at the current H,V location, and then
increment the current H-coordinate by
the character’s width.

128 NOP No-op, do nothing, ignore.

129 BOP n<4> p<4>

Beginning of page n, with pointer p to

the BOP command of the previous page.

By “pointer” is meant the relative byte

number within the DVI file, where the

first byte (the BOP of the first page) is
byte number zero. (ex.: If the first page
had only a BOP and EOP, the third
page’s pointer would be 9, because the

BOP command takes bytes 0 to 7, the

EOP is 8, so the second page’s BOP

is in byte 9. Get it?). The first page

has a —1 for a pointer; the second, a

gero. Start the H- and V-coordinates

out at 0, as well as the w-, x-, y-,

and z-amounts. The stack should be

empty, and no characters will be set
before a FONT(NUM) command occars.

Remember that n can be < 0, if the

page was Roman Numbered. Also the

pages need not come in the proper order
in the file, depending on who’s doing the

TgEXing.

The end of all commands for the page

has been reached. The next page, or the

postamble, starts in the next byte.

131 PST ' The postamble starts here. See below
for the full explanation of what goes in
the postamble.

132 PUSH Push the current values of the H- and

V-coordinates, and the current w-, x-, y-

and z-amounts onto the stack, but don’t

alter them (8o an XO after a PUSH will
get to the same spot that it would have
had, had it been given just before the

PUSH).

Pop the -, y-, x-, and w-amounts, and

the V- and H-coordinates off the stack.

134 VERTRULE h<4> w<4>
Same as HORZRULE, but also incre-
ment the current H-coordinate by w
when done (even if h < O or ¥ < 0).

135 HORZRULE h<4> v<4>
Typeset a rule of height h and width w,
with its bottom left corner at the current
H,V position. fh < 0or v < 0, no rule
should be set.

130 EOP

TUGDoat, Volume 1, No. 1

Command Description

136 HORZCHAR c<1>
Set character ¢ just as above, but don’t
change the current value of the H-
coordinate (or V-coordinate, either).

137 FONT t<4>
From now on, set characters from font
number £. Note that this command is
not currently used by TEX—it is only
needed if f is greater than 63. See
FONTNUM commands below.

144 X2 m<2>
Move right m rsu’s by adding m to the
H-coordinate, and put m into the current
x-amount. Note that m is in 28 comple-
ment, so this could actually be a move
to the left.

143 X3 n<3>
As above.

142 X4 n<4>

As above.

Move right the current x-amount (which

can be negative, etc).

140 W2 a<2>
The same as the X commands (i.e. al-
ters H-coordinate), but alter w-amount
rather than x-amount, so that doing a
‘WO command can have different results

145 X0

than doing an X0 command.
139 W3 a<3>
As above.
138 W4 n<4>
As above.
141 W0 Move right the current w-amount.
148 Y2 n<2>
Same idea, but now it’s “down”
rather than “right”, so the V-coordinate
changes, as does the y-amount.
147Y31n<3>
As above.
146 Y4 n<4>
As above.
149 YO Guess.
152 22 a<2>
Another downer. Affects the V-
coordinate and z-amount.
151 23 m<3>
150 Z4 n<4>
153 20 Guess again.

154 to 217 FONTNUM’s

Make 0,1,...,63 the current font.
218 to 255 are currently undefined

and will not be output by TgX.

19

Pages need not be sequential by number, but
any blank or non-existent page might not be repre-
sented, so page —5’s pointer to the “previous page”
might point to page 34, for instance (remember that
TEX uses negative numbers for roman-numbered
pages). The first page in the file has a “previous
page” pointer of —1.

The postamble begins with a PST command, fol-
lowed by four bytes of previous-page pointer to the
last real page, followed by four bytes of the height
of the tallest page (in rsu’s), followed by four bytes
of the width of the widest. Next come some Font
Definitions (maybe none, if you’re an authoritarian),
each of which has a Font ID in the first 4 bytes, fol-
lowed by 4 bytes of Font Number, followed by any
character not in the font name, followed by the Font
Name, one character per byte for as many bytes
as necessary, followed by that same character that
was not in the Font Name (a quote is probably a
good choice for such a character). The end of the
font definitions is marked by an ID of —1 (which
will not be followed by font number, etc). The four
bytes following this phony ID are a pointer to the
PST command {i.e. the begining of the postambie),
which is followed by a zero byte, which is followed
by at least 4 bytes containing the number 22340
(which is *337 octal). The reason for some of the
above weirdness is twofold: We are producing DVI
files with a Pascal program, and to avoid doing any
non-serial I/0, the postamble pointer has to go at
the end of the file. Of course, most programs that
read these files need not be generally transportable,
and can do a random seek to the end of the file, and
then another to get right to the postamble. The
fact that page-pointers point backwards is in the
same spirit, but this also allows the file to be read in
backwards-page-order efficiently. This, in turn, will
allow for further eficiencies in communicating with
your device, depending on how clever it (and yon) is
(are).

Stanford University July 10, 1980.

¥ % % % % % * % % *

UNIVERSITY OF MINNESOTA
CDC SITE REPORT
Thea Hodge

‘We have succeeded in compiling TEX-in-PASCAL
on our Cyber 172 but cannot yet run it. TEXPRE,
which should generate the required table file, has
some problem relative to our system. Michael
Frisch, our manager of user libraries and graphics
software, is working on that. We are awaiting

